# Robust Pseudo-Markets for Reusable Public Resources 

EC 2023
Sid Banerjee, Giannis Fikioris, Éva Tardos
CORNELL UNIVERSITY

## Reusable Resource sharing

- n agents



## Reusable Resource sharing

n agents

- $T$ rounds



## Reusable Resource sharing

n agents

- $T$ rounds
- Indivisible reusable resource



## Reusable Resource sharing

n agents

- $T$ rounds
- Indivisible reusable resource
- Time sensitive demands



## Reusable Resource sharing

- n agents
- $T$ rounds
- Indivisible reusable resource
- Time sensitive demands
- Cannot charge money



## Reusable Resource sharing

n agents

- $T$ rounds
- Indivisible reusable resource
- Time sensitive demands
- Cannot charge money

- Scientific Research:
- Telescope
- Gene sequencer
- Computing cluster



## Reusable Resource sharing

n agents

- Trounds

■ Indivisible reusable resource

- Time sensitive demands
- Cannot charge money

- Scientific Research:
- Telescope
- Gene sequencer
- Computing cluster

- Simulate market with artificial currency


## Single Agent Model

Agent $i$ on round $t$ :

## Single Agent Model

Agent $i$ on round $t$ :

- Duration $K_{i}[t]$


## Single Agent Model

Agent $i$ on round $t$ :

- Duration $K_{i}[t]$
- Per-round value $V_{i}[t]$


## Single Agent Model

Agent $i$ on round $t$ :
■ Duration $K_{i}[t]$

- Per-round value $V_{i}[t]$
- Non-preemptive


## Single Agent Model

Agent $i$ on round $t$ :

- Duration $K_{i}[t]$
- Per-round value $V_{i}[t]$
- Non-preemptive



## Single Agent Model

Agent $i$ on round $t$ :

- Duration $K_{i}[t]$
- Per-round value $V_{i}[t]$
- Non-preemptive



## Single Agent Model

## Agent $i$ on round $t$ :

■ Duration $K_{i}[t]$

- Per-round value $V_{i}[t]$
- Non-preemptive



## Single Agent Model

## Agent $i$ on round $t$ :

- Duration $K_{i}[t]$
- Per-round value $V_{i}[t]$
- Non-preemptive



## Single Agent Model

## Agent $i$ on round $t$ :

- Duration $K_{i}[t]$
- Per-round value $V_{i}[t]$
- Non-preemptive



## Single Agent Model

## Agent $i$ on round $t$ :

- Duration $K_{i}[t]$
- Per-round value $V_{i}[t]$
- Non-preemptive

- Bayesian setting: $\left(V_{i}[t], K_{i}[t]\right) \sim F_{i}$


## Benchmark

- Incomparable values: social welfare is ill-defined


## Benchmark

- Incomparable values: social welfare is ill-defined

■ Individual agent benchmark (fairness)

## Benchmark

- Incomparable values: social welfare is ill-defined

■ Individual agent benchmark (fairness)

- Agent $i$ has fair share $\alpha_{i} \in(0,1)$


## Benchmark

- Incomparable values: social welfare is ill-defined

■ Individual agent benchmark (fairness)

- Agent $i$ has fair share $\alpha_{i} \in(0,1)$
- For single round demands where

$$
V_{i}[t]=1 \quad \text { w.p. } 1
$$

cannot expect total utility $T$

## Benchmark

- Incomparable values: social welfare is ill-defined

■ Individual agent benchmark (fairness)

- Agent $i$ has fair share $\alpha_{i} \in(0,1)$
- For single round demands where

$$
V_{i}[t]=1 \quad \text { w.p. } 1
$$

cannot expect total utility $T$

- For single round demands where

$$
V_{i}[t]=1 \quad \text { w.p. } \alpha_{i}
$$

can hope for total utility $\approx \alpha_{i} T$

## Ideal Utility

## Individual agent guarantee

Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

## Ideal Utility

## Individual agent guarantee

- Simplified setting:
- Agent $i$ is alone
- Win at most $\alpha_{i}$ fraction of the rounds

Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

## Ideal Utility

## Individual agent guarantee

- Simplified setting:
- Agent $i$ is alone
- Win at most $\alpha_{i}$ fraction of the rounds
- Policy $\pi_{i}\left(V_{i}[t], K_{i}[t]\right)$

Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

## Ideal Utility

Individual agent guarantee

- Simplified setting:
- Agent $i$ is alone
- Win at most $\alpha_{i}$ fraction of the rounds
- Policy $\pi_{i}\left(V_{i}[t], K_{i}[t]\right)$
- Ideal utility $v_{i}^{\star}$ : expected per-round utility under $\pi_{i}^{\star}$

Defined in [Gorokh-Banerjee-lyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

## IDEAL UTILITY

Individual agent guarantee

- Simplified setting:
- Agent $i$ is alone
- Win at most $\alpha_{i}$ fraction of the rounds
- Policy $\pi_{i}\left(V_{i}[t], K_{i}[t]\right)$
- Ideal utility $v_{i}^{\star}$ : expected per-round utility under $\pi_{i}^{\star}$
- Independent of other agents

Defined in [Gorokh-Banerjee-lyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

## IDEAL UTILITY

Individual agent guarantee

- Simplified setting:
- Agent $i$ is alone
- Win at most $\alpha_{i}$ fraction of the rounds
- Policy $\pi_{i}\left(V_{i}[t], K_{i}[t]\right)$
- Ideal utility $v_{i}^{\star}$ : expected per-round utility under $\pi_{i}^{\star}$
- Independent of other agents


## Theorem - Ideal Utility Calculation

$v_{i}^{\star}$ and $\pi_{i}^{\star}$ can be computed by an LP.
Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

## Mechanism

First-Price Pseudo-Auction with Multi-Round Reserves

## Mechanism

First-Price Pseudo-Auction with Multi-Round Reserves
Input: fair shares $\alpha_{1}, \ldots, \alpha_{n}$ and reserve price $r$

## Mechanism

First-Price Pseudo-Auction with Multi-Round Reserves
Input: fair shares $\alpha_{1}, \ldots, \alpha_{n}$ and reserve price $r$

1. Agent $i$ gets $\alpha_{i} T$ credits

## Mechanism

First-Price Pseudo-Auction with Multi-Round Reserves
Input: fair shares $\alpha_{1}, \ldots, \alpha_{n}$ and reserve price $r$

1. Agent $i$ gets $\alpha_{i} T$ credits
2. Every round $t$ : first-price auction with multi-round reserve $r$

## Mechanism

First-Price Pseudo-Auction with Multi-Round Reserves
Input: fair shares $\alpha_{1}, \ldots, \alpha_{n}$ and reserve price $r$

1. Agent $i$ gets $\alpha_{i} T$ credits
2. Every round $t$ : first-price auction with multi-round reserve $r$

- Collect desired durations and per-round bids


## Mechanism

First-Price Pseudo-Auction with Multi-Round Reserves
Input: fair shares $\alpha_{1}, \ldots, \alpha_{n}$ and reserve price $r$

1. Agent $i$ gets $\alpha_{i} T$ credits
2. Every round $t$ : first-price auction with multi-round reserve $r$

- Collect desired durations and per-round bids
- Highest valid per-round bid wins


## Mechanism

First-Price Pseudo-Auction with Multi-Round Reserves
Input: fair shares $\alpha_{1}, \ldots, \alpha_{n}$ and reserve price $r$

1. Agent $i$ gets $\alpha_{i} T$ credits
2. Every round $t$ : first-price auction with multi-round reserve $r$

- Collect desired durations and per-round bids
- Highest valid per-round bid wins
- Multi-round bids must be at least reserve $r$


## Ideal Utility Guarantees

Robust Bidding Policy: follow $\pi_{i}^{\star}$ and bid reserve price $r$

## Ideal Utility Guarantees

Robust Bidding Policy: follow $\pi_{i}^{\star}$ and bid reserve price $r$

## Theorem - Robust Guarantee

If $r \geq 1$ then even under adversarial competition agent $i$ can guarantee expected utility

$$
v_{i}^{\star} T \min \left\{\frac{1}{r}, 1-\frac{1-\alpha_{i}}{r}\right\}-O(\sqrt{T})
$$

## Ideal Utility Guarantees

Robust Bidding Policy: follow $\pi_{i}^{\star}$ and bid reserve price $r$

## Theorem - Robust Guarantee

If $r \geq 1$ then even under adversarial competition agent $i$ can guarantee expected utility

$$
v_{i}^{\star} T \min \left\{\frac{1}{r}, 1-\frac{1-\alpha_{i}}{r}\right\}-O(\sqrt{T})
$$

Maximized if $r=2$ :

$$
\frac{v_{i}^{\star}}{2} T-O(\sqrt{T})
$$

## Guarantee Intuition

## GUARANTEE Intuition

- If $r=1$ others block agent $i$


## Guarantee Intuition

- If $r=1$ others block agent $i$



## Guarantee Intuition

- If $r=1$ others block agent $i$

- If $r=2$ others win at most $\approx \frac{T}{2}$ rounds



## Guarantee Intuition

- If $r=1$ others block agent $i$

- If $r=2$ others win at most $\approx \frac{T}{2}$ rounds

- If $K_{i}[t]=1$ agent $i$ wins $\alpha_{i}$ fraction of free rounds


## GUARANTEE INTUITION

- If $r=1$ others block agent $i$

- If $r=2$ others win at most $\approx \frac{T}{2}$ rounds

- If $K_{i}[t]=1$ agent $i$ wins $\alpha_{i}$ fraction of free rounds
- If $K_{i}[t]=2$ rely on martingale argument


## Corollary for Social Welfare

## Corollary for Social Welfare

- Equal fair shares
- Identical distributions


## Corollary for Social Welfare

- Equal fair shares
- Identical distributions
- Optimal online social welfare $\leq T n v^{\star}$


## Corollary for Social Welfare

- Equal fair shares
- Identical distributions
- Optimal online social welfare $\leq T n v^{\star}$
- 2 bound on the PoA


## Theorem - Optimality of mechanism

No mechanism can guarantee every agent $i$ expected utility more than

$$
v_{i}^{\star} T\left(\frac{1}{2}+O\left(\frac{1}{k_{\max }}\right)\right)
$$

as $n \rightarrow \infty$.

- $n$ identical agents with $\alpha_{i}=\frac{1}{n}$
- $n$ identical agents with $\alpha_{i}=\frac{1}{n}$
- $\left(V_{i}[t], K_{i}[t]\right)=\left(1, k_{\max }\right)$ with small probability

- $n$ identical agents with $\alpha_{i}=\frac{1}{n}$
- $\left(V_{i}[t], K_{i}[t]\right)=\left(1, k_{\max }\right)$ with small probability
- $v_{i}^{\star}=\frac{1}{n} \Longrightarrow T n v^{\star}=T$

- $n$ identical agents with $\alpha_{i}=\frac{1}{n}$
- $\left(V_{i}[t], K_{i}[t]\right)=\left(1, k_{\max }\right)$ with small probability
- $v_{i}^{\star}=\frac{1}{n} \Longrightarrow T n v^{\star}=T$
- Social welfare at most $\frac{T}{2}$

- Public reusable resource sharing
- Ideal utility: individual agent benchmark
- First-Price Pseudo-Auction with Multi-Round Reserves
- Robust Bidding Policy: guarantees half of total ideal utility
- No mechanism guarantees everyone more than half of total ideal utility

